x(2x-4)-3x(x^2+4x-8)=

Simple and best practice solution for x(2x-4)-3x(x^2+4x-8)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2x-4)-3x(x^2+4x-8)= equation:


Simplifying
x(2x + -4) + -3x(x2 + 4x + -8) = 0

Reorder the terms:
x(-4 + 2x) + -3x(x2 + 4x + -8) = 0
(-4 * x + 2x * x) + -3x(x2 + 4x + -8) = 0
(-4x + 2x2) + -3x(x2 + 4x + -8) = 0

Reorder the terms:
-4x + 2x2 + -3x(-8 + 4x + x2) = 0
-4x + 2x2 + (-8 * -3x + 4x * -3x + x2 * -3x) = 0
-4x + 2x2 + (24x + -12x2 + -3x3) = 0

Reorder the terms:
-4x + 24x + 2x2 + -12x2 + -3x3 = 0

Combine like terms: -4x + 24x = 20x
20x + 2x2 + -12x2 + -3x3 = 0

Combine like terms: 2x2 + -12x2 = -10x2
20x + -10x2 + -3x3 = 0

Solving
20x + -10x2 + -3x3 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), 'x'.
x(20 + -10x + -3x2) = 0

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0

Subproblem 2

Set the factor '(20 + -10x + -3x2)' equal to zero and attempt to solve: Simplifying 20 + -10x + -3x2 = 0 Solving 20 + -10x + -3x2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -6.666666667 + 3.333333333x + x2 = 0 Move the constant term to the right: Add '6.666666667' to each side of the equation. -6.666666667 + 3.333333333x + 6.666666667 + x2 = 0 + 6.666666667 Reorder the terms: -6.666666667 + 6.666666667 + 3.333333333x + x2 = 0 + 6.666666667 Combine like terms: -6.666666667 + 6.666666667 = 0.000000000 0.000000000 + 3.333333333x + x2 = 0 + 6.666666667 3.333333333x + x2 = 0 + 6.666666667 Combine like terms: 0 + 6.666666667 = 6.666666667 3.333333333x + x2 = 6.666666667 The x term is 3.333333333x. Take half its coefficient (1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. 3.333333333x + 2.777777779 + x2 = 6.666666667 + 2.777777779 Reorder the terms: 2.777777779 + 3.333333333x + x2 = 6.666666667 + 2.777777779 Combine like terms: 6.666666667 + 2.777777779 = 9.444444446 2.777777779 + 3.333333333x + x2 = 9.444444446 Factor a perfect square on the left side: (x + 1.666666667)(x + 1.666666667) = 9.444444446 Calculate the square root of the right side: 3.073181486 Break this problem into two subproblems by setting (x + 1.666666667) equal to 3.073181486 and -3.073181486.

Subproblem 1

x + 1.666666667 = 3.073181486 Simplifying x + 1.666666667 = 3.073181486 Reorder the terms: 1.666666667 + x = 3.073181486 Solving 1.666666667 + x = 3.073181486 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + x = 3.073181486 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + x = 3.073181486 + -1.666666667 x = 3.073181486 + -1.666666667 Combine like terms: 3.073181486 + -1.666666667 = 1.406514819 x = 1.406514819 Simplifying x = 1.406514819

Subproblem 2

x + 1.666666667 = -3.073181486 Simplifying x + 1.666666667 = -3.073181486 Reorder the terms: 1.666666667 + x = -3.073181486 Solving 1.666666667 + x = -3.073181486 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + x = -3.073181486 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + x = -3.073181486 + -1.666666667 x = -3.073181486 + -1.666666667 Combine like terms: -3.073181486 + -1.666666667 = -4.739848153 x = -4.739848153 Simplifying x = -4.739848153

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.406514819, -4.739848153}

Solution

x = {0, 1.406514819, -4.739848153}

See similar equations:

| 2+3x-2+x+5=180 | | 3(2p-4)-6=-6(p-5)+12 | | 35x^2-13x-12=0 | | 1+n-8n=-20 | | p(30)=(18+200)(600-5(200)) | | x/4+3=5-x/3 | | 3(2k-5)=27 | | 9x-7=4x+11 | | 7c+3-10c=12 | | 30=(18+x)(600-5x) | | 2(z-4)=-6+56 | | 2x^2+3y^2-8+30y+77=0 | | y=sin(cos(8x)) | | 2x+62=-50 | | 3n^2+0.75=90 | | w^2-3w+4=0 | | p(30)=(18+x)(600-5x) | | 5-10x-2x^2=0 | | 7a-5=-19 | | Tn=2n-3 | | 3(x+4)-2=8x-5 | | c=0.05t+5 | | u^3-27=0 | | 64x^2+81=90x | | Log(x+2)=(log(x^2-4)-log(x^2-x-2)) | | 3y=11-8x | | 5y-3=5x | | 6y^6-36y^5+54y^4=0 | | 22h-63+10h=56+25h-28 | | 4x-13-5x=-12x-36 | | Log(4x)+log(13)=3 | | 4x+y=3t-2r |

Equations solver categories